Sains Malaysiana 54(4)(2025): 1159-1166
jjhttp://doi.org/10.17576/jsm-2025-5404-15
Sintesis dan Mekanisme Pertumbuhan Kepingan NbS2 yang Dihasilkan Melalui Pemendapan Wap Kimia Dibantu Garam Halida
(Synthesis and Growth
Mechanism of NbS2 Flakes Produced via Halide Salt-Assisted Chemical
Vapor Deposition)
SYAHIRAH
AHINAYADULLAH, MUHAMMAD HILMI JOHARI, MUHAMMAD FARIS MUSAWWI RUSLAN, MEGA
FATMASARI, AKRAJAS ALI UMAR & ABDUL RAHMAN MOHMAD*
Institut Kejuruteraan Mikro dan
Nanoelektronik, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
Diterima: 20 Ogos 2024/ Diserahkan: 9 Oktober 2024
Abstrak
Bahan 2-dimensi berasaskan logam
peralihan dwikalkogen (TMD) terutamanya niobium disulfida (NbS2)
berpotensi diaplikasi sebagai mangkin dalam proses elektrolisis air untuk menghasilkan
hidrogen. Dalam kajian ini, sintesis dan pencirian kepingan NbS2 yang
dihasilkan menggunakan teknik pemendapan wap kimia dibantu logam alkali halida
akan dilaporkan. Bahan pelopor yang digunakan ialah sulfur dan campuran Nb2O5 dan garam halida iaitu NaCl. Suhu pertumbuhan yang dikaji ialah 840, 880 dan
920 °C. Kepingan NbS2 dengan panjang sisi sehingga ~60 µm dan
ketebalan 120-180 nm telah diperoleh. Spektrum Raman menunjukkan bahawa kepingan
NbS2 yang diperoleh pada suhu 840 °C terdiri daripada fasa 3R dan campuran
2H dan 3R. Pada suhu >840 °C, fasa yang dominan ialah 3R. Data menunjukkan
bahawa kepingan NbS2 terbentuk melalui mekanisme
wap-cecair-pepejal (VLS). Tindak balas antara Nb2O5 dan
NaCl menghasilkan NaNbxOy dalam fasa cecair. Titisan NaNbxOy kemudiannya berkumpul di permukaan dan pinggir kepingan dan diikuti
proses sulfurisasi untuk menghasilkan NbS2. Ini menyebabkan
pertumbuhan berlaku secara serentak iaitu secara mengufuk dan menegak. Selain
itu, data spektroskopi
foto-elektron sinar-X (XPS) menunjukkan kehadiran Na2SO3 yang
berkemungkinan besar adalah hasil sampingan daripada tindak balas antara bahan
pelopor.
Kata
kunci: Garam halida; logam peralihan dwikalkogen; niobium disulfida; pemendapan
wap kimia
Abstract
Two-dimensional transition metal dichalcogenides (TMDs),
particularly niobium disulfide (NbS2) is a promising catalyst for
water electrolysis to produce hydrogen. This study reports the synthesis and
characterization of NbS2 flakes prepared by metal alkali
halide-assisted chemical vapor deposition technique. The precursors used were
sulfur and a mixture of Nb2O5 and halide salt, NaCl. The
growth temperatures were varied at 840, 880, and 920 °C. NbS2 flakes
with side lengths of up to ~60 µm and thicknesses of 120-180 nm were obtained.
Raman spectra indicated that NbS2 flakes prepared at 840 °C are 3R
phase and a mixture of 2H and 3R phases. At temperatures >840 °C, the
dominant phase is 3R. The data suggests that the NbS2 flakes are formed
via a vapor-liquid-solid (VLS) mechanism. First, the reaction between Nb2O5 and NaCl produced NaNbxOy in the liquid phase. The
NaNbxOy droplets then accumulated on the surface and
edges of the flakes, followed by a sulfurization process to form NbS2.
This resulted in simultaneous growth in horizontal and vertical directions.
X-ray photoelectron spectroscopy (XPS) data showed the presence of Na2SO3 which is likely to be the by-product of the reaction between the precursors.
Keywords:
Chemical vapor deposition; halide salt; niobium disulfide; transition metal
dichalcogenides
RUJUKAN
Dash, J. K., Chen, L., Dinolfo, P. H., Lu, T. M. &
Wang, G. C. 2015. A Method Toward Fabricating Semiconducting 3R-NbS2 Ultrathin
Films. Journal of Physical Chemistry C 119 (34): 19763-19771
Eda, G., Yamaguchi, H., Voiry, D.,
Fujita, T., Chen, M. & Chhowalla, M. 2011. Photoluminescence from chemically
exfoliated MoS2. Nano Letters 11(12): 5111-5116.
Fu, Q., Wang, X., Zhou, J., Xia, J., Zeng, Q., Lv, D.,
Zhu, C., Wang, X., Shen, Y., Li, X., Hua, Y., Liu, F., Shen, Z., Jin, C. &
Liu, Z. 2018. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chemistry of Materials 30(12): 4001-4007.
Ge, W., Kawahara, K., Tsuji, M. & Ago, H. 2013.
Large-scale synthesis of NbS2 nanosheets with controlled orientation
on graphene by ambient pressure CVD. Nanoscale 5: 5773-5778.
Johari, M.H., Sirat, M.S., Mohamed, M.A., Mustaffa, A.F.
& Mohmad, A.R. 2023. Computational
fluid dynamics insights into chemical vapor deposition of homogeneous MoS2 film with
solid precursors. Nanotechnology Crystal Research & Technology 10(8): 2300139.
Liao, Y., Park, K-S., Xiao, P.,
Henkelman, G., Li, W. & Goodenough, J.B. 2013. Sodium intercalation
behavior of layered NaxNbS2 (0 ≤ x ≤ 1). Chemistry of
Materials 25(9): 1699-1705.
Li, S., Wang, S., Tang, D-M., Zhao, W., Xu, H., Chu,
L. & Eda, G. 2015. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today 1(1): 60-66.
Li, T., Guo, W., Ma, L., Li, W., Yu, Z., Han, Z., Gao,
S., Liu, L., Fan, D., Wang, Z., Yang, Y., Lin, W., Luo, Z., Chen, X., Dai, N.,
Tu, X., Pan, D., Yao, Y., Wang, P., Nie, Y., Wang, J., Shi, Y. & Wang, X.
2021. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single
crystals on sapphire. Nature Nanotechnology 16: 1201-1207.
Liu, D.W., Cao, G.Z. & Wang, Y.
2009. Positive Electrode: Nanostructured Transition Metal Oxides. Elsevier
B.V.
Lu, Q., Yu, Y., Ma, Q., Chen, B.
& Zhang, H. 2015. 2D transition-metal-dichalcogenide nanosheet-based
composites for photocatalytic and electrocatalytic hydrogen evolution reactions.
Advanced Materials 28(10): 1917-1933.
McMullan, W.G. & Irwin, J.C. 1983. Raman
scattering from 2H and 3R–NbS2. Solid State Communications 45(7): 557-560.
Mohmad, A.R., Hamzah, A.A., Yang, J., Wang, Y.,
Bozkurt, İ.H., Shin, H.S., Jeong, H.Y. & Chowalla, M. 2021. Synthesis
of metallic mixed 3R and 2H Nb1+xS2 nanoflakes by
chemical vapor deposition. Faraday Discussions 227: 332-340.
Siow, K.S., Britcher, L., Kumar, S. & Griesser,
H.J. 2018. XPS study of sulfur and phosphorus compounds with different
oxidation states. Sains Malaysiana 47(8): 1913-1922.
Song, X., Wang, Y., Zhao, F., Li, Q., Ta, H.Q.,
Rümmeli, M.H., Tully, C., Li, Z., Yin, W., Yang, L., Lee, K., Yang, J.,
Bozkurt, İ.H., Liu, S., Zhang, W. & Chhowalla, M. 2019. Plasmon-free
surface-enhanced Raman spectroscopy using metallic 2D materials. ACS Nano 13(7): 8312-8319.
Tsai, C., Chan, K., Nørskov, J.K. &
Abild-Pedersen, F. 2015. Theoretical insights into the hydrogen evolution
activity of layered transition metal dichalcogenides. Surface Science 640:
133-140.
Voiry, D., Yamaguchi, H., Li, J.,
Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda,
G. & Chhowalla, M. 2013. Enhanced catalytic activity in
strained chemically exfoliated WS2 nanosheets for hydrogen
evolution. Nature Materials 12: 850-855.
Yanase, T., Watanabe, S., Weng, M., Wakeshima, M.,
Hinatsu, Y., Nagahama, T. & Shimada, T. 2016. Chemical vapor deposition of
NbS2 from a chloride source with H2 flow: Orientation control
of ultrathin crystals directly grown on SiO2/Si substrate. Crystal
Growth & Design 16: 4467.
Zhao, S., Hotta, T., Koretsune, T., Watanabe, K., T., Taniguchi,
T., Sugawara, K., Takahashi, T., Shinohara, H. & Kitaura, R. 2016. Two-dimensional
metallic NbS2: Growth, optical identification and transport properties. 2D Materials 3: 025027.
*Pengarang
untuk surat-menyurat; email: armohmad@ukm.edu.my