Sains Malaysiana 54(4)(2025): 1159-1166

jjhttp://doi.org/10.17576/jsm-2025-5404-15

 

 Sintesis dan Mekanisme Pertumbuhan Kepingan NbS2 yang Dihasilkan Melalui Pemendapan Wap Kimia Dibantu Garam Halida

(Synthesis and Growth Mechanism of NbS2 Flakes Produced via Halide Salt-Assisted Chemical Vapor Deposition)

 

SYAHIRAH AHINAYADULLAH, MUHAMMAD HILMI JOHARI, MUHAMMAD FARIS MUSAWWI RUSLAN, MEGA FATMASARI, AKRAJAS ALI UMAR & ABDUL RAHMAN MOHMAD*

 

 Institut Kejuruteraan Mikro dan Nanoelektronik, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diterima: 20 Ogos 2024/ Diserahkan: 9 Oktober 2024

 

Abstrak

Bahan 2-dimensi berasaskan logam peralihan dwikalkogen (TMD) terutamanya niobium disulfida (NbS2) berpotensi diaplikasi sebagai mangkin dalam proses elektrolisis air untuk menghasilkan hidrogen. Dalam kajian ini, sintesis dan pencirian kepingan NbS2 yang dihasilkan menggunakan teknik pemendapan wap kimia dibantu logam alkali halida akan dilaporkan. Bahan pelopor yang digunakan ialah sulfur dan campuran Nb2O5 dan garam halida iaitu NaCl. Suhu pertumbuhan yang dikaji ialah 840, 880 dan 920 °C. Kepingan NbS2 dengan panjang sisi sehingga ~60 µm dan ketebalan 120-180 nm telah diperoleh. Spektrum Raman menunjukkan bahawa kepingan NbS2 yang diperoleh pada suhu 840 °C terdiri daripada fasa 3R dan campuran 2H dan 3R. Pada suhu >840 °C, fasa yang dominan ialah 3R. Data menunjukkan bahawa kepingan NbS2 terbentuk melalui mekanisme wap-cecair-pepejal (VLS). Tindak balas antara Nb2O5 dan NaCl menghasilkan NaNbxOy dalam fasa cecair. Titisan NaNbxOy kemudiannya berkumpul di permukaan dan pinggir kepingan dan diikuti proses sulfurisasi untuk menghasilkan NbS2. Ini menyebabkan pertumbuhan berlaku secara serentak iaitu secara mengufuk dan menegak. Selain itu, data spektroskopi foto-elektron sinar-X (XPS) menunjukkan kehadiran Na2SO3 yang berkemungkinan besar adalah hasil sampingan daripada tindak balas antara bahan pelopor.

Kata kunci: Garam halida; logam peralihan dwikalkogen; niobium disulfida; pemendapan wap kimia

 

Abstract

Two-dimensional transition metal dichalcogenides (TMDs), particularly niobium disulfide (NbS2) is a promising catalyst for water electrolysis to produce hydrogen. This study reports the synthesis and characterization of NbS2 flakes prepared by metal alkali halide-assisted chemical vapor deposition technique. The precursors used were sulfur and a mixture of Nb2O5 and halide salt, NaCl. The growth temperatures were varied at 840, 880, and 920 °C. NbS2 flakes with side lengths of up to ~60 µm and thicknesses of 120-180 nm were obtained. Raman spectra indicated that NbS2 flakes prepared at 840 °C are 3R phase and a mixture of 2H and 3R phases. At temperatures >840 °C, the dominant phase is 3R. The data suggests that the NbS2 flakes are formed via a vapor-liquid-solid (VLS) mechanism. First, the reaction between Nb2O5 and NaCl produced NaNbxOy in the liquid phase. The NaNbxOy droplets then accumulated on the surface and edges of the flakes, followed by a sulfurization process to form NbS2. This resulted in simultaneous growth in horizontal and vertical directions. X-ray photoelectron spectroscopy (XPS) data showed the presence of Na2SO3 which is likely to be the by-product of the reaction between the precursors.

Keywords: Chemical vapor deposition; halide salt; niobium disulfide; transition metal dichalcogenides

 

RUJUKAN

Dash, J. K., Chen, L., Dinolfo, P. H., Lu, T. M. & Wang, G. C. 2015. A Method Toward Fabricating Semiconducting 3R-NbS2 Ultrathin Films. Journal of Physical Chemistry C 119 (34): 19763-19771

Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M. & Chhowalla, M. 2011. Photoluminescence from chemically exfoliated MoS2. Nano Letters 11(12): 5111-5116.

Fu, Q., Wang, X., Zhou, J., Xia, J., Zeng, Q., Lv, D., Zhu, C., Wang, X., Shen, Y., Li, X., Hua, Y., Liu, F., Shen, Z., Jin, C. & Liu, Z. 2018. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chemistry of Materials 30(12): 4001-4007.

Ge, W., Kawahara, K., Tsuji, M. & Ago, H. 2013. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 5: 5773-5778.

Johari, M.H., Sirat, M.S., Mohamed, M.A., Mustaffa, A.F. & Mohmad, A.R. 2023.       Computational fluid dynamics insights into chemical vapor deposition of        homogeneous MoS2 film with solid precursors. Nanotechnology Crystal Research &         Technology 10(8): 2300139.

Liao, Y., Park, K-S., Xiao, P., Henkelman, G., Li, W. & Goodenough, J.B. 2013. Sodium intercalation behavior of layered NaxNbS2 (0 ≤ x ≤ 1). Chemistry of Materials 25(9): 1699-1705.

Li, S., Wang, S., Tang, D-M., Zhao, W., Xu, H., Chu, L. & Eda, G. 2015. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today 1(1): 60-66.

Li, T., Guo, W., Ma, L., Li, W., Yu, Z., Han, Z., Gao, S., Liu, L., Fan, D., Wang, Z., Yang, Y., Lin, W., Luo, Z., Chen, X., Dai, N., Tu, X., Pan, D., Yao, Y., Wang, P., Nie, Y., Wang, J., Shi, Y. & Wang, X. 2021. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nature Nanotechnology 16: 1201-1207.

Liu, D.W., Cao, G.Z. & Wang, Y. 2009. Positive Electrode: Nanostructured Transition Metal Oxides. Elsevier B.V.

Lu, Q., Yu, Y., Ma, Q., Chen, B. & Zhang, H. 2015. 2D transition-metal-dichalcogenide nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Advanced Materials 28(10): 1917-1933.

McMullan, W.G. & Irwin, J.C. 1983. Raman scattering from 2H and 3R–NbS2. Solid State Communications 45(7): 557-560.

Mohmad, A.R., Hamzah, A.A., Yang, J., Wang, Y., Bozkurt, İ.H., Shin, H.S., Jeong, H.Y. & Chowalla, M. 2021. Synthesis of metallic mixed 3R and 2H Nb1+xS2 nanoflakes by chemical vapor deposition. Faraday Discussions 227: 332-340.

Siow, K.S., Britcher, L., Kumar, S. & Griesser, H.J. 2018. XPS study of sulfur and phosphorus compounds with different oxidation states. Sains Malaysiana 47(8): 1913-1922.

Song, X., Wang, Y., Zhao, F., Li, Q., Ta, H.Q., Rümmeli, M.H., Tully, C., Li, Z., Yin, W., Yang, L., Lee, K., Yang, J., Bozkurt, İ.H., Liu, S., Zhang, W. & Chhowalla, M. 2019. Plasmon-free surface-enhanced Raman spectroscopy using metallic 2D materials. ACS Nano 13(7): 8312-8319.  

Tsai, C., Chan, K., Nørskov, J.K. & Abild-Pedersen, F. 2015. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surface Science 640: 133-140.

Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G. & Chhowalla, M. 2013. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials 12: 850-855.

Yanase, T., Watanabe, S., Weng, M., Wakeshima, M., Hinatsu, Y., Nagahama, T. & Shimada, T. 2016. Chemical vapor deposition of NbS2 from a chloride source with H2 flow: Orientation control of ultrathin crystals directly grown on SiO2/Si substrate. Crystal Growth & Design 16: 4467.

Zhao, S., Hotta, T., Koretsune, T., Watanabe, K., T., Taniguchi, T., Sugawara, K., Takahashi, T., Shinohara, H. & Kitaura, R. 2016. Two-dimensional metallic NbS2: Growth, optical identification and transport properties. 2D Materials 3: 025027.

 

*Pengarang untuk surat-menyurat; email: armohmad@ukm.edu.my  

 

 

 

 

 

 

 

           

sebelumnya